US009264322B2

a2 United States Patent

Csaszar et al.

US 9,264,322 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR HANDLING
NETWORK RESOURCE FAILURES IN A
ROUTER
Inventors: Andras Csaszar, Budapest (HU);
Gabor Sandor Enyedi, Bekescsaba
(HU); Sriganesh Kini, Fremont, CA
(US)
Telefonaktiebolaget L. M Ericsson
(publ), Stockholm (SE)
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 556 days.

13/811,716

Oct. 7, 2010

PCT/EP2010/065040

(735)

(73)

")

Assignee:
Notice:
1)

(22)
(86)

Appl. No.:
PCT Filed:
PCT No.:

§371 (D),
(2), (4) Date: May 22, 2013
PCT Pub. No.: 'W02012/013251

PCT Pub. Date: Feb. 2, 2012
Prior Publication Data

US 2013/0232259 Al Sep. 5, 2013
Related U.S. Application Data

Provisional application No. 61/369,158, filed on Jul.

30, 2010.
Int. CI.

GO6F 15/16
HO4L 12726

87

(65)

(60)

(51)
(2006.01)
(2006.01)

(Continued)

U.S. CL

CPC HO04L 43/04 (2013.01); HO4L 43/0817
(2013.01); HO4L 45/025 (2013.01); HO4L
45/028 (2013.01); HO4L 45/22 (2013.01);

HO04L 45/28 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(52)

(58)
(56) References Cited
U.S. PATENT DOCUMENTS

6,697,325 Bl
7,184,437 Bl

2/2004 Cain
2/2007 Cole et al.

(Continued)

3. forwarding

FOREIGN PATENT DOCUMENTS

WO 2012000557 Al 1/2012

OTHER PUBLICATIONS
Markopoulou, A. et al., “Characterization of Failures in an IP Back-
bone”, Research at Intel, IR-TR-2004-250, 2004, pp. 1-12, Intel
Corporation, [Retrieved on Jan. 17, 2013], Retrieved from Internet:
http://www.intel-research.net/Publications/Cambridge/
031820050728_305.pdf.

(Continued)

Primary Examiner — Mohamed Ibrahim
(74) Attorney, Agent, or Firm — Coats & Bennett, PLLC

(57) ABSTRACT

There is provided a method for use by a router in a commu-
nications network. Forwarding information is maintained
(S1) which specifies the next hop node for each of a plurality
of possible destination nodes. Update information is main-
tained (S1) which specifies how, if at all, the next hop nodes
specified in the forwarding information are to be updated for
aplurality of possible network resource failures. Known fail-
ure information is maintained (S1) which relates to a known
network resource failure or which specifies that there is no
known network resource failure. A failure notification is
received (S2) relating to a network resource failure. In
response to receipt of the failure notification, it is determined
(S3) from the failure notification how, if at all, the known
failure information is to be updated, and the known failure
information is updated, if required, based on the determina-
tion (S4). A communications packet is received (S5). Various
steps (S6 to S10) are carried out in response to receipt of the
communications packet. The destination node for the
received packet is determined (S6). It is determined (S7)
whether the next hop node specified by the forwarding infor-
mation for the determined destination node is potentially
invalid in view of the known failure information. If so, then
the next hop node for the determined destination node is
updated if necessary in the forwarding information using the
update information and the known failure information (S8).
The nexthop node is determined for the received packet using
the forwarding information and the determined destination
node (S9). The received packet is forwarded towards the
determined next hop node (S10).

18 Claims, 13 Drawing Sheets

|F| 4. processing

FP FP

A

1. Incoming message .

L]

2. flooding

2. forwarding v

FP 4. processing

US 9,264,322 B2
Page 2

(51) Int.CL

HO4L 12/751 (2013.01)
HO4L 12/759 (2013.01)
HO4L 12/707 (2013.01)
HO4L 12/703 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,633,860 B2* 12/2009 Liccoovvininnnn. HO4L 41/06068
370/225
7,738,365 B2* 6/2010 Chaoc.ccoceene. HO4L 45/00
370/228

2002/0131362 Al 9/2002 Callon

2003/0126287 Al* 7/2003 Charny ... HO4L 41/0896
709/239
2004/0167988 Al* 82004 Rune HO4L 12/4616
709/238

2005/0076231 Al 4/2005 Ichinohe et al.
2011/0273980 Al* 11/2011 Ashwood Smith HO4L 45/00
370/225

OTHER PUBLICATIONS

Enyedi, G. et al., “Finding Multiple Maximally Redundant Trees in
Linear Time”, Department of Telecommunications and Media
Informatics, Budapest University of Technology and Economics,
Hungary, [Retrieved on Jan. 17, 2013], Retrieved from Internet:
http://opti.tmit.bme hu/~enyedi/ipfrr/distMaxRed Tree.pdf.
Kvalbein, A. et al., “Fast IP Network Recovery Using Multiple Rout-
ing Configurations”, IEEE/ACM Transactions on Networking
(TON); 25th IEEE International Conference on Computer Commu-
nications, Barcelona, Spain, Conference Publication, Apr. 1, 2006,
pp. 1-11, Print ISBN: 1-4244-0221-2. IEEE.

Shand, M. et al., “IP Fast Reroute Framework”, Internet Engineering
Task Force (IETF), Request for Comments: 5714, Jan. 1, 2010, pp.
1-16,ISSN: 2070-1721, [Retrieved on Jan. 17,2013], Retrieved from
Internet: http://tools.ietf.org/html/rfc5714.

Shand, M. et al., “IP Fast Reroute Using Not-via Addresses draft-
ietf-rtgwg-ipfrr-notvia-addresses-05”, IETF Network Working
Group Internet-Draft, Mar. 5, 2010, pp. 1-32, [Retrieved on Jan. 17,
2013], Retrieved from Internet: http://tools.ietf.org/html/draft-ietf-
rtgwg-ipfrr-notvia-addresses-05.

Wang, J. et al., “IP Fast Reroute with Failure Inferencing”, Proceed-
ings of the 2007 SIGCOMM workshop on Internet network manage-
ment (INM’07), Aug. 27, 2007, Kyoto, Japan, pp. 268-273, ACM,
NY, USA.

Enyedi, G. et al., “IP Fast ReRoute: Lightweight Not-Via without
Additional Addresses”, INFOCOM 2009, Rio de Janeiro, Brazil,
Conference Publication, Apr. 19, 2009, pp. 2771-2775. IEEE.
Hokelek, I. et al., “Loop-Free IP Fast Reroute Using Local and
Remote LFAPs draft-hokelek-rlfap-01.txt”, IETF Network Working
Group Internet-Draft, Feb. 25, 2008, pp. 1-17, [Retrieved on Jan. 17,
2013], Retrieved from Internet: http://tools.ietf.org/html/draft-
hokelek-rifap-01.

Enyedi, G. etal., “On Finding Maximally Redundant Trees in Strictly
Linear Time”, IEEE Symposium on Computers and Communica-
tions (ISCC 2009), Sousse, Tunisia, Conference Publication, Jul. 5,
2009, pp. 206-211. IEEE.

Atlas, A., “U-turn Alternates for IP/LDP Fast-Reroute draft-atlas-ip-
local-protect-uturn-03”, IETF Network Working Group Internet-
Draft, Feb. 1, 2006, pp. 1-30, [Retrieved on Jan. 17, 2013], Retrieved
from Internet: http://tools.ietf.org/html/draft-atlas-ip-local-protect-
uturn-03.

Atlas, A. et al., “Basic Specification for IP Fast Reroute: Loop-Free
Alternates”, IETF Network Working Group Request for Comments:
5286, Standards Track, Sep. 1, 2008, pp. 1-32, [Retrieved on Jan. 17,
2013], Retrieved from Internet: http://tools.ietf.org/html/rfc5286.

* cited by examiner

U.S. Patent Feb. 16, 2016 Sheet 1 of 13 US 9,264,322 B2

FIG. 1

Without
any info
in S: loop

Default
shortest
path

PRIOR ART

FIG. 2

U.S. Patent Feb. 16, 2016 Sheet 2 of 13 US 9,264,322 B2

FIG 3
CP_ | 3. processing
. v P
2. forwarding % N
""" 'd 7 Y
o N
+* "/, [I \\
x > 4. forwarding A
FP FP FP
A
1. Incoming message |
5. flooding
PRIOR ART
FIG. 4
CP 4. processing
- [P]
3. forwarding
T TG e '
Gl . |
1 o"‘ v g v
FP FP FP 4. processing
|F P [RN |F

A

1. Incoming message .

2. flooding

U.S. Patent

FIG. 5

Feb. 16, 2016

Sheet 3 of 13

US 9,264,322 B2

B C D
Receiving trigger Propagate Forwarding Upcall to
(local event or —»| notification || Configuration || cp
received message) Change

FIG. 6

Receiving trigger
(local failure or
notification about
remote failure)

CP pre-calculates
failure specific
alternative routes

Alternative route
entries in FIB

A 4

FPN

FIB change to
activate
alternative
routes

U.S. Patent Feb. 16, 2016 Sheet 4 of 13 US 9,264,322 B2
FIG. 7
| Maintain Maintain update Maintain known i
i forwarding information (UI) failure ' St
i | information (FI) information (KFI) i

Receive failure
notification

(KF1)

KFI update
required?

Update KFI

S4

Receive packet

Determine
destination node
from packet

S7

Next hop for
dest. node
up to date?

S5
S6
(FI,KFl) (Ul, KFI)
o y S8

Update next hop
in Fl for
destination node

Y

Determine next
hop for
destination node

S9

v

Forward packet
to next hop

S10

U.S. Patent Feb. 16, 2016 Sheet 5 of 13 US 9,264,322 B2

FIG. 8
Router 1 CPU 30
F y
A
FI Memory Ul Memory KFI Memory
12 14 16
FPU (¢—» Processor » FPU
20
Receiver Transmitter
18 FPU 10)

A

Router Router

U.S. Patent Feb. 16, 2016 Sheet 6 of 13 US 9,264,322 B2

FIG. 9

O,

10

Link not in spanning tree
Link in spanning tree

FIG. 10

10

O,

Link not in spanning tree
Link in spanning tree

U.S. Patent Feb. 16, 2016 Sheet 7 of 13 US 9,264,322 B2

FIG. 11

U.S. Patent Feb. 16, 2016 Sheet 8 of 13 US 9,264,322 B2

FIG. 12

Link not in spanning tree

Link in spanning tree

U.S. Patent Feb. 16, 2016 Sheet 9 of 13 US 9,264,322 B2

FIG. 13
Source node: S S s S S s S
Destination node: a b c d e f r
Default next hop: a b b b e b b
New next SRLG1| a [(a [(e | @] e [(e)] (a)
hop node if SRLG2| b b b b e b b
failure in: SRLG3 | a b b b e b b
SRLG4 | a b b b e b b
SRLG5| a b b b (b) b b
SRLG6 | a b b b e b b
SRLG7 | a b b b e b b
SRLG8 | a b b b e b b
FIG. 14
Source node: S S 5 S 5 S s
Destination node: a b c d e f r
Default next hop: a b b b e b b
New next |a @ | b b b e b b
hop node | b a | @] e [(e] ()
if failure c a b (&) b e (e) b
innode: | d a | b | b [@]el|6b b
e a b b b | @ | b b
f a b b b e [& b
r a b b b e b | (®
FIG. 15 FIG. 16
(Source node: s) (Source node: s)
(Dest | (Failure in) (Dest | (Failure in)
node) | (change to next node) | (change to next
hop node) hop node)
a SRLG2 ®b a a»&
b SRLG1 *a b b > X
c SRLG1 »e c b—>e c*X
d SRLG1 ?a d b—*e d*&
e SRLG5 ® b e e X
f SRLG1 e f b>e cPe | P& |
r SRLG1 P a r b»e r» Y

U.S. Patent Feb. 16, 2016 Sheet 10 of 13 US 9,264,322 B2

F I G 1 7 (from node s) (from node f)
[Verdict:SRLG1 | {SRLG1,nodeb} | {SRLG1,nodec} |
FIG. 18
{from node s) (from node a) (from node d) (from node c)

[Verdict: node b | {SRLG1, node b} | {SRLG3, node b} | {SRLGS8, node b} | {SRLG1, node b} |

FIG. 19
FIB
SRLG lists Destination Next Hop

a SRLG2 —»b a a
b SRLG1 —»a b =

[J |I_//> a

c SRLG1 —»e | T L’,_> e
d SRLG1 —»a d =

[“— = 34

e SRLG5 —b e e

f SRLG1 —»e I f '\> e
SRLG1 —» T

r a | T I-’/> a

U.S. Patent Feb. 16, 2016 Sheet 11 of 13 US 9,264,322 B2

FIG. 20

Result of FIB lookup for dest d: KnownFailureList

Cache miss -
NextHop: b | Failiure: 00 @Verdnct:SRLGh 01

{SRLG1, node b}

SRLG lists: {SRLG1, node c}

d SRLG1 9 a

U.S. Patent Feb. 16, 2016 Sheet 12 of 13 US 9,264,322 B2

FIG. 21

L1 L2 L3 L4

SRLG 1

SRLG 1,2

SRLG 2,3
SRLG 3

U.S. Patent Feb. 16, 2016 Sheet 13 of 13 US 9,264,322 B2

FIG 22

L1 L2 L3

SRLG 1

SRLG 1,2

SRLG 2,3
SRLG 3

US 9,264,322 B2

1
METHOD AND APPARATUS FOR HANDLING
NETWORK RESOURCE FAILURES IN A
ROUTER

TECHNICAL FIELD

The present invention relates to a method and apparatus for
handling network resource failures in a router.

BACKGROUND

Traditional IP routing (e.g. Interior Gateway Protocols
[IGPs] such as Open Shortest Path First [OSPF] or Interme-
diate System to Intermediate System [ISIS]) has relatively
slow fail-over properties. Hence, the Internet Engineering
Task Force (IETF) routing working group and also the
research community has been considering several alterna-
tives for IP Fast Re-Route (IPFRR).

The basic components of almost all previously considered
IPFRR proposals are the following:

Fast failure detection, locally. This is assumed to be already
existing. Mechanisms exist like Bidirectional Forward-
ing Detection (BFD) or lower layer upcalls if the lower
layer detects the failure (loss of signal). IPFRR solutions
rely on fast failure detection but do not target it as a
problem.

Pre-calculated backup paths. The routing engine can pre-
pare for failures by pre-calculating alternate paths (i.e.
alternate next-hops) that should be used in case of fail-
ures.

Pre-downloaded backup forwarding entries. The next-hops
are not only pre-calculated but they are also pre-down-
loaded into the forwarding engine, i.e. the linecards so
that they can be used instantly upon a trigger.

Switch-over to backup forwarding entries within the for-
warding engine. The fast failure detection is processed
in the line cards and the FIB change is performed locally
and instantly without any involvement of the control
plane. (FIB stands for Forwarding Information Base,
and is also known as a Forwarding Table.)

Ensure consistent forwarding in other hops. Since no one
else knows about the failure every other node has the
same FIB as before the failure. Due to IP’s hop-by-hop
forwarding nature, a neighbour might route the packet
back towards the point of local repair (still believing that
it is the shortest path) which results in a forwarding loop,
meaning that the failure was not handled. See FIG. 1 of
the accompanying drawings.

Some previous proposals suggest suppressing IGP conver-
gence temporarily. The goal is to see if failure is persis-
tent, and if yes then let the control plane IGP re-converge
onto new paths globally. Otherwise, in case of transient
failures, it is possible to completely hide down and up
events quickly following each other. When the failure
disappears, it is possible to use the original paths, and
avoid unnecessary Control Processor (CP) reconfigura-
tion.

The above mechanism is extremely useful to eliminate a
big portion of the tasks that traditional re-routing procedures
performed: to be able to respond to a failure there is no need
to start calculating the new paths (a control plane task) and
there is no need to download the results to the forwarding
card.

It can be easily seen that in order to make consistent (i.e.
loop-free) forwarding decisions in arbitrary failures on arbi-

10

15

25

35

40

45

50

55

65

2

trary topologies, remote nodes must get some form of infor-
mation about the failure. This is illustrated in FIGS. 1 and 2 of
the accompanying drawings.

Almost all existing proposals have tried to provide this
information implicitly within the re-routed data packets.

Piggyback on user data packets
Bits in packet header (MRC [A. Kvalbein, A. F. Hansen,

T. Cicic, S. Gjessing, O. Lysne, “Fast IP networkre-
covery using multiple routing configurations”, Net-
work Operations and Management Symposium,
2008. NOMS 2008. IEEE, 2008])

Encapsulation header (Not-Via [S. Bryant, M. Shand, S.
Previdi, “IP fast reroute using Not-via addresses”,
Internet Draft, available online: http://tools.ietf.org/
html/draft-ietf-rtgwg-ipfrr-notvia-addresses-05,
2010])

Packet direction (FIFR [J. Wand, S. Nelakuditi, “IP fast
reroute with failure inferencing”, In Proceedings of
ACM SIGCOMM Workshop on Internet Network Man-
agement—The Five-Nines Workshop, 2007], LFA
U-turn [A. Atlas, “U-turn alternates for ip/ldp fast-re-
route”, Internet Draft, available online: http://tools.iet-
f.org/html/draft-atlas-ip-local-protect-uturn-03, 2006])

One exception is Loop Free Alternates (LFA) [A. Atlas, A.
Zinin, “Basic specification for IP Fast-Reroute: Loop-Free
Alternates”, Internet Engineering Task Force: RFC 5286,
2008] but that cannot guarantee full failure coverage. LFA is
only dealing with failure situations where the node detecting
the failure can on its own find an alternate neighbour who
provides a loop free path with default routing.

The proposal of Hokelek et al [“Loop-Free IP Fast Reroute
Using Local and Remote LFAPs™, http://tools.ietf.org/html/
draft-hokelek-rlfap-01] makes another important exception.
They propose to advertise the failure explicitly in a signalling
message, which allows distant nodes to switch to new for-
warding configurations upon the reception of the notification.

The present applicant has therefore appreciated that most
of'the IPFRR solution proposals try to implicitly incorporate
the notification into the data packets. There is one exception,
LFA [referenced above], which is trying to select safe alter-
native next-hops which do not loop the packet or do not
forward it through the failure. The drawback of LFA is that it
cannot guarantee full failure coverage. Forexample in FIG. 1,
in case of link failure A-D, node A has no loop free alternates
towards destination D.

The present applicant has appreciated that neither of the
existing proposals is acceptable from a practical implemen-
tation perspective.

Not-Via [referenced above] and similar solutions rely on
tunnelling. However, encapsulation is not preferred due to
fragmentation at Maximum Transmission Unit (MTU). Both
segmentation and reassembly at the tunnel end-point
decrease forwarding performance. Also, Not-Via requires
special tunnel endpoint addresses, the management of which
is cumbersome. MRC assumes that packet marking is used to
encode a new routing configuration ID. There are, however,
no viable bits in the IP header for this purpose, and encapsu-
lation would cause the same problems as for Not-via.

FIFR on the other hand relies on interface-specific for-
warding, i.e. remote nodes infer the fact of the failure from the
incoming direction of the packet. A typical router’s design
has the same replica of the forwarding table at each linecard
(serving multiple interfaces/adjacencies)—an assumption
deep in HW/SW which is extremely hard to change.

Explicit failure notification signalling has to be extremely
fast not to have the same problem as with the traditional
flooding mechanism of OSPF or ISIS. The draft by Hokelek

US 9,264,322 B2

3

et al about “Loop-Free IP Fast Reroute Using Local and
Remote LFAPs” [referenced above] does not describe how
the failure notification has to be flooded fast and without
additional control plane delays in each hop, or how the FIB
has to be updated rapidly.

The reason why the Hokelek et al draft does not deal with
such important problems, is that this solution was developed
originally for wireless ad-hoc routing; for ad-hoc routing the
most important is to minimize the protocol overhead, the area
of notification propagation. Since this area was limited seri-
ously (only a few hops), the delay caused by the propagation
is insignificant. Moreover, such networks do not have to deal
with numerous prefixes, thus updating is not an issue either.

Normally, in the current state of the art, if a Forwarding
Processor (FP, typically a linecard) receives a notification
packet of a protocol, which needs to be disseminated and
processed at the same time, the notification is sent to the
separated Control Processor (CP). The CP processes the
packet, ensures the flooding of the information and reconfig-
ures the FPs. This is illustrated in FIG. 3 of the accompanying
drawings, which shows a process carried out by a previously-
considered router. A Forwarding Processor (FP, typically a
linecard) receives a notification packet of a protocol in step 1,
the notification packet being of a type that needs to be dis-
seminated and processed. The notification is sent to a separate
Control Processor (CP) for processing in step 2. The CP
processes the packet in step 3, and arranges for the forwarding
of the packet to the FPs in step 4, which in turn floods the
information to other routers (step 5). Through the processing
carried out by the CP, the CP also reconfigures the FPs.
However, CP interaction is not preferred if the goal is to
provide instant flooding of the incoming message (and maybe
even instant processing after flooding). If the control plane is
involved then reaction times are hard to be guaranteed to be
sub-second, never mind in the order of milliseconds that
would be desired for carrier-grade fail-over performance.

It is desirable to find efficient ways of handling failure
notifications.

SUMMARY

A method is provided for use by a router in a communica-
tions network. Forwarding information is maintained which
specifies the next hop node for each of a plurality of possible
destination nodes. Update information is maintained which
specifies how, if at all, the next hop nodes specified in the
forwarding information are to be updated for a plurality of
possible network resource failures. Known failure informa-
tion is maintained which relates to a known network resource
failure or which specifies that there is no known network
resource failure. A failure notification is received relating to a
network resource failure. In response to receipt of the failure
notification, it is determined from the failure notification how,
if at all, the known failure information is to be updated, and
the known failure information is updated, if required, based
on the determination. A communications packet is received.
Various steps are carried out in response to receipt of the
communications packet. The destination node for the
received packet is determined. It is determined whether the
next hop node specified by the forwarding information for the
determined destination node is potentially invalid in view of
the known failure information. If so, then the next hop node
for the determined destination node is updated if necessary in
the forwarding information using the update information and
the known failure information. The next hop node is deter-
mined for the received packet using the forwarding informa-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion and the determined destination node. The received packet
is forwarded towards the determined next hop node.

An apparatus for use as or in a router of a communications
network is also provided, the apparatus comprising: means
for maintaining forwarding information specifying the next
hop node for each of a plurality of possible destination nodes;
(b) means for maintaining update information specifying
how, if at all, the next hop nodes specified in the forwarding
information are to be updated for a plurality of possible net-
work resource failures; (c) means for maintaining known
failure information relating to a known network resource
failure or specifying that there is no known network resource
failure; (d) means for receiving a failure notification relating
to a network resource failure, and in response to receipt of the
failure notification: (i) determining from the failure notifica-
tion how, if at all, the known failure information is to be
updated; (i) updating the known failure information, if
required, based on the determination; () means for receiving
a communications packet, and in response to receipt of the
communications packet: (1) determining the destination node
for the received packet; (ii) determining whether the next hop
node specified by the forwarding information for the deter-
mined destination node is potentially invalid in view of the
known failure information; (ii1) if so, then updating if neces-
sary the next hop node for the determined destination node in
the forwarding information using the update information and
the known failure information; (iv) determining the next hop
node for the received packet using the forwarding informa-
tion and the determined destination node; and (v) forwarding
the received packet towards the determined next hop node.

There is also provided a program for controlling an appa-
ratus to perform a method as set out above or which, when
loaded into an apparatus, causes the apparatus to become an
apparatus as set out above. The program may be carried on a
carrier medium. The carrier medium may be a storage
medium. The carrier medium may be a transmission medium.

There is provided an apparatus programmed by such a
program.

There is provided a storage medium containing such a
program.

An embodiment of the present invention offers a technical
advantage of providing an efficient way of handling failure
notifications (of any type). Technical advantages are set out in
more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1, discussed hereinbefore, illustrates forwarding
inconsistency in case of local repair; the path of S to D leads
through A;

FIG. 2, discussed hereinbefore, illustrates the information
required concerning the failure to provide consistent forward-
ing; S is required to change its default path;

FIG. 3, discussed hereinbefore, illustrates a previously-
considered process in a router for flooding information;

FIG. 4 illustrates a modified process for distributing infor-
mation;

FIG. 5 illustrates steps performed in a Forwarding Engine;

FIG. 6 is for use in explaining an embodiment of the
present invention;

FIG. 7 is a schematic flow chart illustrating steps per-
formed by an apparatus embodying the present invention;

FIG. 8 is a schematic block diagram illustrating parts of an
apparatus according to an embodiment of the present inven-
tion;

US 9,264,322 B2

5

FIG. 9 illustrates a sample network with a single spanning
tree (denoted by bold lines); the cost of the links in the tree is
1, all the other link costs are 10;

FIG. 10 illustrates a sample network with a Shared Risk
Link Group (SRLG) failure;

FIG. 11 illustrates a pair of redundant trees rooted at r;

FIG. 12 illustrates a sample network; numbers next to
edges denote the identifier of SRLG containing the link; the
cost is 1 for bold edges and 10 for solid edges;

FIG. 13 illustrates a SRLG array of node s;

FIG. 14 illustrates a node array for node s;

FIG. 15 illustrates SRLG lists for node s;

FIG. 16 illustrates node lists for node s;

FIG. 17 illustrates the “KnownFailureTable” of node s,
when SRLG1 fails (FIG. 12); the notifications were origi-
nated by s and f;

FIG. 18 illustrates the “KnownFailureTable” of node s,
when node b went down (FIG. 12); the notifications were
originated by s, a, d and c;

FIG. 19 illustrates the updating of corresponding entries
with a greedy manner in node s (FIG. 12), after SRLG1 has
failed;

FIG. 20 illustrates a lazy update for destinationd in the case
of failure of SRLG1 in node s (FIG. 12);

FIG. 21 illustrates a sample network; and

FIG. 22 illustrates MPLS protection paths.

DETAILED DESCRIPTION

Co-pending PCT Patent Application No. PCT/EP2010/
059391 describes an efficient and quick mechanism to dis-
tribute information between nodes in a network. The mecha-
nism is referred to as Fast Path Notification, or FPN.

FPN was designed to react to events affecting the data
plane forwarding engine of nodes and to advertise such infor-
mation to other nodes. The advertisement can be performed
without control plane interaction, hence FPN is as fast as
possible. Forwarding of the notifications is basically per-
formed in each node using multicast on the fast-path.

The concept of FPN is illustrated in FIGS. 4 and 5.

FIG. 4 illustrates schematically a process for disseminating
information, and is intended to act as a comparison with FIG.
3 discussed above. In the process illustrated in FIG. 4, fol-
lowing receipt in step 1 at the Forwarding Processor of a
notification packet which needs to be disseminated and pro-
cessed, the FP notification packet is forwarded directly in step
2 to the other FPs, in this illustration bypassing the CP
entirely. This is in contrast to FIG. 3, where the notification
packet is forwarded to the other FPs only after processing by
the CP.

Around the same time as forwarding the notification packet
is forwarded to the other FPs (and hence also indicated as
being step 2 in FIG. 4), the notification packet is flooded to
other routers by the first FP and other FPs that are in receipt of
the notification packet from the first FP. This ensures very
rapid dissemination of the critical information in the notifi-
cation packet. Local internal reconfiguration of the FP can
also be performed rapidly.

Only then is the notification packet forwarded in step 3 up
to the CP for processing in step 4. Following that, the CP
processes the notification packet in step 4 and then arranges
for any configuration of the FPs required by the notification
packet. Itis to be noted that step 4 (i.e. the mere sending of the
notification packet to the CP) can happen concurrently with or
even before step 2, so long as processing by the CP does not
delay step 2. Step 2 can happen at least partly in parallel with
step 3 and/or 4, but for any benefit to be achieved by the

10

15

20

25

30

35

40

45

50

55

60

65

6

present invention step 2 must be complete before step 4 does
(or at least before the result of the processing is notified to the
FPs or before any resulting reconfiguration of the FPs is
arranged or performed).

In a router, the control plane processor/card (CP) runs the
well known routing protocols and calculates the necessary
information for forwarding (routing table). An optimised
variant of the routing table (i.e. the forwarding table) is then
downloaded to the linecards (forwarding engine, forwarding
processor, data plane, FP, etc.). The linecard using this infor-
mation can forward packets in an efficient and quick way to
guarantee the line speeds required.

A single router may incorporate several linecards (several
FPs). A packet coming in on one FP may be forwarded using
another port on the same FP or onto another FP. A router could
operate with a single linecard.

Steps performed in each forwarding engine (FP) are illus-
trated schematically in FIG. 5.

Referring to step A, the incoming trigger may be a received
fast notification message (remote event) or the trigger may be
the detection of a local event. If the trigger is a message, the
message header will be the hint that a fast path notification has
arrived (e.g. special multicast destination address and/or spe-
cial IP protocol field). Either a local event or the remote
notification case requires the information to be rapidly for-
warded to the rest of the network.

Referring to step B, in each hop the primary task is to
propagate the notification further to selected neighbours.
Within the node, this task is based on multicast; that is, the
packet needs to be multicasted to a selected set of neighbours
(see next chapter about details).

Referring to step C, processing of the notification is begun
within the linecard if the router is subscribed for this notifi-
cation and if the FP is prepared for making forwarding con-
figuration changes. (For instance, the reaction to a notifica-
tion indicating a remote failure may be the reconfiguration of
the forwarding table.)

Referring to step D, if the node is subscribed to the notifi-
cation, it is sent to the control plane, which can run its own
process. For instance, it may reconfigure itself or it may undo
the forwarding configuration changes made within the lin-
ecard.

An important use-case of FPN is to advertise failures in the
network. An embodiment of the present invention works out
the details of how FPN should be used to distribute failure
advertisements and how nodes should process the received
notifications. The FPN concept as set out in PCT Patent
Application No. PCT/EP2010/059391 describes, generally,
how any notification should be distributed. FPN proposes
three different distribution alternatives:

Spanning-tree mode: nodes consistently agree on a single
distribution tree reaching each node in the area. The
spanning tree mode has the advantage of simplicity. Its
drawback is that if a link fails, where the link is on the
spanning tree, it will cut the spanning tree. The same
happens if a node fails, given that each node is on the
spanning tree by definition.

Redundant-tree mode: nodes in the area consistently agree
and setup a pair of so called redundant trees. A pair of
redundant trees guarantees that even after ANY single
node or single link failure each node can reach the com-
mon root of both trees at least along one of the trees.
Consequently, this means that even in the presence of
any single failure, each notification can reach the root
node, which can then forward the notification to each
other node.

US 9,264,322 B2

7

Flooding-mode: each node multicasts the received notifi-
cations to each of its neighbours except to the one from
where it was received. This method guarantees that any
notification reaches each other node even despite of
multiple failures—as long as a path can be found. This
mode requires duplicate check to be performed in the
linecard.

It is desirable to provide a solution that:

does not rely on tunnelling;

does not rely on interface-specific forwarding;

does not assume any bits available in user IP packets to do
packet marking;

keeps any processing at fail-over in the forwarding engine
(linecard) to guarantee rapidity

For this purpose an embodiment of the present invention
builds upon the Fast Path Notification (FPN) service. How-
ever, although FPN is a good mechanism to be used to dis-
tribute failure notifications, it is to be appreciated that the
present invention is not limited to using FPN for failure noti-
fications. The forwarding configuration within the FPs
(within the linecards) is updated as a reaction to receiving
such a notification. The alternative forwarding configuration
is pre-calculated and pre-downloaded by the control plane
processor to the forwarding engine in preparation for local
and remote failures as necessary.

An overview is provided in FIG. 6, though again it will be
noted that the use of FPN in an embodiment of the present
invention is not essential.

The incoming trigger may be a received fast notification
message (remote failure) or the trigger may be the detection
of a local failure event. If a local failure has been detected, a
notification packet is assembled containing the identity of the
connection which has failed. Then the FPN service is used to
distribute this notification to the rest of the area.

Nodes receiving the notification initiate a procedure to
activate the alternative routes specific to the failure: the for-
warding engine itself performs the reconfiguration. The pro-
cedure can be to immediately start and switch the necessary
forwarding entries. Alternatively, when a packet is forwarded,
the forwarding engine can check if the active route is coherent
with the known failures. If not, that specific route entry is
updated.

A protection technique is provided for IP networks,
capable of rerouting packets rapidly in the case of a failure.
Although there are several such proposals (these schemes are
called IPFRR techniques), all of them have serious drawbacks
as discussed above. These drawbacks stem from the fact that
these techniques are based on two principles: packets must be
rerouted locally to some precomputed detours.

In order to provide local rerouting (when only the neigh-
bours of the failed resource “know” the failure), some mark-
ing is needed. However, observe that the propagation time of
the failure notification is not a real bottleneck when Fast Path
Notification (FPN) is used. Thus, a proposal according to an
embodiment of the present invention, referred to herein as
FPN Based FRR (FBF), gives up local rerouting, and utilizes
FPN for protection purposes.

However, observe that although propagating the informa-
tion about a failure is not a bottleneck, communication with
CP and computation after a failure must be avoided. There-
fore, FBF still precomputes the next hops, and downloads all
of them to the FPs, which can autonomously switch to an
alternate next hop immediately without the need of time
consuming CP interaction. In the followings, we exactly
describe this scheme.

For simplicity, first it is supposed that each link is in exactly
one Shared Risk Link Group (SRLG). Each link is at least part

10

20

25

30

40

45

65

8
ofan SRLG consisting of only the link itself (both directions).
In other cases, an SRLG may consist of multiple different
links (but each link is still in one SRLG only). The extended
case, when links are allowed to be assigned to multiple
SRLGs, is described thereafter.

The next part of the description is divided into the follow-
ing sections: (1) failure detection; (2) dissemination of the
failure notification using FPN; (3) preparation for failures;
and (4) reaction to a failure.

Failure detection will now be described (section 1 men-
tioned above).

First consider the case that the network is intact and is in a
stable state. When a failure shows up the first task is to detect
it. This can be realized in multiple ways. This is generally
known and for the purpose of the present invention it is
assumed that a fast failure detection mechanism can be used.

The simplest is to rely on some extra information of a lower
network layer, e.g., the physical layer can detect the loss of
voltage or loss of signal. However, this failure detection can-
not be applied for non-physical point-to-point links. In this
case some fast hello protocol can be used, like Bidirectional
Forwarding Detection (BFD). Using BFD, failure detection
can be realized in 10-20 ms at most.

Note, however, that when a node detects in either way that
a connection to one of its peers has gone down, it cannot be
sure whether it is a link failure or whether the peer node itself
went down.

Dissemination of the failure notification using FPN will
now be described (section 2 mentioned above).

As it was discussed above, FBF is not based on local
rerouting, instead it advertises the fact that a failure occurred.
Therefore, the way of propagating this information is an
essential part of the mechanism. This invention proposes to
advertise failures using FPN and so to perform fast rerouting
in case of “down” events in remote nodes. However, this
invention assumes that “up” events (e.g. a link seems to be
connected again) are not advertised with FPN, or at least that
IPFRR is not subscribed to “up” advertisements. Once the
forwarding engine performed re-routing based on a failure
notification (“down” event), it is the responsibility of a con-
trol plane protocol (e.g. IGP) to re-configure the forwarding
engine, should the failure be corrected.

The generic FPN concept as set out in PCT Patent Appli-
cation No. PCT/EP2010/059391 defines notifications with
the following format:

Resource ID: a key uniquely identifying a resource in the
network about which the notification contains information

Instance ID: this field is responsible to identify a specific
instance of the notification. In general for the same resource,
multiple notifications may be sent after each other, hence
nodes might need to know which information is the most
recent. This field may be a timestamp set at the originator or
a sequence number.

Event code: this field is responsible for disclosing what has
happened to the element identified by the above Resource ID.

Info field: this field may contain further data, depending on
the application of the FPN service. It may be empty if not
needed.

In general, the source IP address is set to the address of the
node originating the information. The destination IP address
is set to MC-FPN, i.e. to the multicast group address of FPN,
which is known by each node.

An embodiment of the present invention specifies these
fields for this specific IPFRR application.

The source IP address is set to the data plane entity’s
interface address originating the information (i.e. detecting

US 9,264,322 B2

9

the failure). This not only identifies the originator node but
also the specific interface on the node.

Resource ID is set to the identifier of the neighbour with
which the connection was lost.

Instance ID is not needed (not used) by an embodiment of
this invention, since it is supposed that IGP convergence takes
place after fast rerouting. Hence, another notification about
the same resource takes place only after the control plane, i.e.
the IGP, has finished processing the first event. That is, if a
resource went down, it is considered down, till IGP does not
change its state).

The Info field identifies the SRLG that has failed.

Event code either shall contain a well-known code that
means “failure” for every recipient or shall not be used, since
we only advertise failures as it was mentioned above.

The FPN concept as set out in PCT Patent Application No.
PCT/EP2010/059391 describes three different modes for dis-
tributing the information (as briefly summarised above). It is
important to mention, since the CP is excluded from FPN (CP
can be noticed that an FPN notification was received, but only
after it was further propagated and processed by the linecard.
Thus, FPN is processed without the CP, and the FP receiving
the FPN packet must notify other FPs in the same node), that
FPN takes care of passing the notification to all FPs in a single
node (even if that FP is not needed for multicasting the noti-
fication to the selected neighbours).

The simplest mode of FPN operation is to build a sole
spanning tree as a bidirectional multicast tree, and if a failure
shows up, the notification can be propagated along this tree.
Naturally, a failure may partition the spanning tree into some
disjoint components. However, observe that if only a single
link failure cuts the tree into two, there is an endpoint of the
link in both components, and they can notify other nodes in
the same part of the tree. In this way, a notification describing
the failure can be propagated in both of the two components,
and all the nodes can be notified.

As an example consider the network depicted in FIG. 9,
and suppose that link b-c goes down, which splits the span-
ning tree into two. However, there will be a notification
describing the failure in both parts of the tree, in one of the
parts the notification will be originated by node b, and in the
other part, it will be originated by node c. In this way, packets
sent by s to d can be rerouted to path s-e-c-r-d.

However, this simple approach has some drawbacks too. If
not a single link fails, but a node or an SRLG, the spanning
tree can be split into more than two components, and not all
the notifications will be received by all the nodes. This can
cause a problem, since in this way differentiate the failure
types is not possible, e.g. nodes cannot distinguish between
SRLG and a node failures.

The problem is demonstrated in FIG. 10, where now not
link b-c¢ fails, but an SRLG containing s-b, b-c, c-f and c-r. In
this way, s has no chance to decide, whether the SRLG or node
b went down, albeit it would be essential for choosing either
aor e as a new next hop towards d. Observe that choosing the
wrong next hop at s towards d would result failing to reach d.

Ifit is supposed that each link can be in at most one SRLG,
redundant trees can help to overcome this problem, which is
the second propagation mode of FPN. As it was mentioned
above, a pair of redundant trees is a pair of such spanning trees
that their common “root” node can be reached from each of
the nodes along at least one of the trees after any single link or
node failure. Since the root can be reached, and the root can
reach all the nodes, if the root replicates the notification
received on one tree, and sends it on the other tree, all the
nodes receive all the notifications. Unfortunately, there are

5

10

15

20

25

30

35

40

45

50

55

60

65

10

still some problems: SRLGs can still split both of trees into
two, the root can fail and redundant trees can be found only in
2-node-connected networks.

In order to solve the SRLG problem, observe that even if
not all the notifications are received, now it is possible to
distinguish between SRLG and node failures. If a node loses
connectivity with another one, nodes having received its noti-
fication can first suppose SRLG failure (recall that we sup-
pose that each link is in exactly one SRLG). If, however, this
assumption was not correct, if there was a node failure, all the
notifications will be received, and each of the nodes can
switch to a node bypassing path.

In order to handle the case when the root fails, a carefully
chosen pair of redundant trees is needed, such that in one of
the trees the root has only one neighbour; thus this tree
remains connected after the failure of the root, and all the
notifications will be received on this tree. Fortunately, several
algorithms for finding redundant trees finds such special pair
of trees as a “side effect” (e.g. [Gabor Enyedi, Péter Szilagyi,
Gabor Rétvari, Andras Csaszar, “IP Fast ReRoute: Light-
weight Not-Via without Additional Addresses”, IEEE INFO-
COM-MiniConference, Rio de Janeiro, Brazil, 2009]). This
is illustrated in FIG. 11.

Finally, when the network is not 2-node-connected, it is
still possible to find a pair of redundant trees in each of its
2-node-connected components. Alternatively, it is possible to
use maximally redundant trees [Gabor Enyedi, Gabor Rét-
vari, Andras Csaszar, “On Finding Maximally Redundant
Trees in Strictly Linear Time”, IEEE Symposium on Com-
puters and Communications (ISCC), 2009] [Gabor Enyedi,
Gabor Rétvari, “Finding Multiple Maximally Redundant
Trees in Linear Time”, available online: http://opti.tmit.b-
me.hu/~enyedi/PhD/distMaxRedTree.pdf, Submitted to
Periodica Polytechnica Electrical Engineering 2010], which
can be found in any connected network. Maximally redun-
dant trees are such spanning trees that the paths towards the
root contains only the unavoidable cut-nodes and cut-links;
the root remains reachable along at least one of the trees, in
the case of a single node or link failure, if the network remains
connected. Naturally, the algorithms in the two Gabor Enyedi
references noted just above find such maximally redundant
trees, where the root has only one neighbour in one of the
trees.

As an example, consider the same network and SRLG
failure as previously (FIG. 10), and suppose that the redun-
dant trees are the ones depicted in FIG. 11 (the root is now
node r). When s detects the loss of connectivity with b, it
immediately supposes that the SRLG is down, and sends
packets to a. Since a receives notifications from b and r along
the first tree and from f and s along the second tree, so
supposes SRLG failure (in this special case, a knows all the
failures, but it would chose SRLG too, even if it had not been
the case) and sends packets to b, which forwards them to d.
Observe that s did not knew all the failures, but selected the
right next hop.

If, however, the first assumption of s was wrong, and not the
SRLG, but b went down, s receives notifications from a, ¢ and
d on the second tree, and can deduce that packets must be
rerouted to e. Observe that s got the notification of d, since it
was able to reach r along the first tree, and it was replicated to
the second tree.

The disadvantage of this solution is that if links can be in
multiple SRLGs, the lack of receiving some notifications may
result the fail of rerouting. Suppose that the SRLG 1 contains
b-s, c-f, b-c and c-r, while SRLG 2 contains b-s, ¢-f, b-c and

US 9,264,322 B2

11

b-d. In this case s do not receive notifications from b, ¢, d and
r, thus it cannot decide, whether forwarding to e or a is the
right choice.

Receiving all the notifications can be realized by flooding
the packets to all the nodes, which is the third propagation
mode of FPN. Moreover, flooding can help to detect the case,
when multiple unrelated failures occurs, in this way allowing
to fall back to traditional recovery rapidly. However, the
drawback of flooding is that packets can be received in mul-
tiple paths, thus it needs duplicate check.

Preparation for failures will now be described (section 3
mentioned above).

This section describes the details how the control plane
pre-calculates the alternative routes for different failures and
how this information is downloaded and stored in the for-
warding engine.

Precomputing and storing the next hops on the new shortest
paths for all the possible single failures may seem complex,
however, as it will turn out, it is not so difficult to realize. First,
observe that this precomputation can be done “offline”, while
the network is intact and the CP has few things to do. Second,
for a single node, it is not needed to compute all the shortest
paths with respect to any possible failures; only those link
failures are needed to be taken into consideration, which are
in the shortest path tree starting from the node.

Therefore, as the first step, the CP computes all the shortest
paths for all possible single SRLG and single node failure
cases (recall that we suppose that each link is in exactly one
SRLG. Thus, by computing the detours for SRLG failures
describes single link failures as well).

The idea here is that once a failure notification is received
that a connection from a node A to a node B went down, the
recipient node first assumes that it is an SRLG failure. If
forthcoming notifications confirm this, i.e. more notifications
are received from the same SRLG, then the decision is OK.
However, if a new notification is received outside the SRLG
but the notifications still match a failure of node B, then the
recipient will change its forwarding entry from the SRLG-
protecting next-hop to the node-protecting next-hop. If it is
possible to calculate in advance a backup route that protects
both the node and the SRLG failure at the same time, then the
CP will install the same entry for both cases.

In order to store all the information needed, in the simplest
case, FBF keeps up two arrays. One of them is the SRLG array
which contains the routes (next-hops) for SRLG failures, the
other one contains the routes for node failures.

If a network area contains V vertices (nodes) and S SRLGs,
then SRLG array stores V*S entries, while node array con-
tains V? entries: x-coordinate is the destination node ID, y-co-
ordinate is the failure ID. Supposing that a next hop can be
described by 4 bytes, SRLG array would need at most 4¥V>
bytes, while node array would need 4*V? bytes. Supposing
that the OSPF area contains not more than 200 nodes, about
30 MB memory is needed for the arrays. Considering that, as
it will turn out, this information can be completely stored in
some slow Dynamic Random Access Memory (DRAM), and
that linecards of recent routers typically have 0.5-2 GB
DRAM, providing this amount of free memory can be accept-
able. If not, another solution discussed later can be applied.

As an example, consider the previous network depicted in
FIG. 12, where the numbers next to the edges describe SRLGs
containing the edge. As it can be observed, each link is in
exactly one SRLG. Most of them is the sole link in the
particular SRLG, except the links b-s, b-c, c-e and c-r, which
make up SRLG1 (this SRLG fails in FIG. 10). The tables in
FIGS. 13 and 14 show the SRLG array and the node array
respectively.

10

20

25

30

35

40

45

50

12

The advantage of this approach is that if node IDs and
failure IDs are numbers from 0 to (V-1), then when an entry
is needed from this table, no search operation has to be per-
formed, the backup entry can be directly addressed.

According to Hokelek et al (referenced above), most fail-
ures influence next hops in a very limited radius, we expect
that only few SRLG or node failures have an impact on the
route to any destination (e.g. 2-3 at most). Thus, another type
of array implementation can be less memory-consuming, as
will now be described.

In this case, the SRLG and node array shall contain point-
ers to lists (these lists are not linked lists but arrays; we call
them lists, since the length of two lists is not necessarily the
same) with varying length for each destination. These lists
contain {SRLG ID, next hop ID} pairs for all the SRLGs
influencing the path of the prefix. Similarly, the other list
contains {node ID, next hop ID} for all the nodes, the failure
of' which may change the next hop of the prefix. Observe that
SRLG lists need much less memory even in worst case sce-
nario; since any path can contain at most V-1 links, SRL.G
lists can contain at most (V-1)? entries (there is no prefix for
the node itself) just as node failure lists. Hence, supposing
that both an SRLG ID and a node ID take at most 4 bytes
(which is not hard to suppose since an IPv4 address is 4 bytes
long), all the entries would take about 2*8%*(V-1) bytes.
Some memory is needed for the pointers in the SRLG and
node array, this needs 4*(V-1) bytes, if a sole pointer takes 4
bytes. Supposing that V=200, now at most about 634 KB is
needed. Moreover, if we suppose that observations in
Hokelek et al [referenced above] are correct at least in aver-
age, and suppose that there are three entries for each prefix,
the alternative next hops would take about 10 KB at most.
Finding such an amount of free memory in a linecard with
0.5-2 GB DRAM must be possible.

Observe that in the case of a failure, finding some elements
in an SRLG or a node list is needed. Therefore, the elements
in these lists should be ordered with respect to the SRLG ID
or node ID respectively, in order to make it possible to use
efficient search algorithms (e.g. binary search).

SRLG lists and node lists for node s are presented in the
Tables of FIGS. 15 and 16 respectively.

Reaction to failures will now be described (section 4 men-
tioned above).

This section describes how a node, or more specifically a
forwarding engine or FP, reacts once it learns about a local or
remote failure via local failure detection or via FPN.

First, the collecting of known failures will be discussed.

The fact that a failure occurred must be stored in a list
containing the known failures and the supposed reason
(which resource was lost), and switching to a safe configura-
tion (described later) can be done. This is a simple array
containing the SRLG ID of the failed link and the ID of the
node with which the connection was lost. We call this array
the “KnownFailureTable”. Note that we suppose that this list
is empty in a stable, failure-free state, thus there are entries
only while fast rerouting keeps up the connection, and IGP
clears the list, when reconfiguration is done. Thus, this list
would typically be quite short, containing only few entries.
Moreover, since this list is short, it can be kept completely in
afast memory, like Static Random Access Memory (SRAM).
Besides storing KnownFailureTable in a fast RAM, it is pro-
posed to store it in a fast RAM that is shared among the
cores/processors of the forwarding engine.

First suppose that the KnownFailureTable is empty and
either a local failure shows up or an FPN notification arrives.
In this case the FP adds an entry to KnownFailureTable. Next,
it is decided whether an SRLG or a node failure happened.

US 9,264,322 B2

13

Since link failures are much more common than node failures
[A. Markopoulou, G. lannaccone, S. Bhattacharyya, C.
Chuah, and C. Diot, “Characterization of failures in an IP
backbone”, In IEEE Infocom, 2004], FBF first assumes
SRLG failure. Forwarding reconfiguration can commence as
described in the next section.

It the KnownFailureTable already contains elements when
the FP is notified about a (local or remote) failure, it compares
the SRLG ID of the new failure with the entries found in the
table. If a new single failure is learnt of the same SRLG, then
the entry is simply added to the list but forwarding reconfigu-
ration is not needed as it was performed before.

However, when a notification contains an SRLG ID differ-
ent from the value(s) stored in the KnownFailureTable, the FP
must assume node failure instead of SRLG failure and for-
warding reconfiguration can commence as described in the
next section.

After performing the forwarding configuration change, the
hypothesis that a node failure happened should be verified by
comparing the second fields in the stored entries with the ID
of the node with which the connection was lost in the new
notification. If all match, the failure is a node failure, so the
initial decision was correct and no time was lost with verifi-
cation before the configuration change.

If neither the SRLG IDs match, nor the node 1Ds match,
there are multiple unrelated failures in the network, which is
nothandled directly by FBF (though see further below), so the
CP is immediately informed, and the failure is handled by
traditional restoration, like OSPF or ISIS.

As an example, the KnownFailureTables of node s (FIG.
12)is presented in the Tables of FIGS. 17 and 18. Observe that
in the first case node s did not receive all the notifications.
However, since it supposes SRLG failure, while the opposite
is not apparent, the assumption is correct. On the other hand,
when node b fails, node s gets all the notifications on at least
one of the trees, so it finds out that the first assumption
(SRLG1) is not correct, when it receives the notification of a,
which contains SRLG3 and node b.

Secondly, finding the new next hop will be discussed.

After the type of the failure was selected (SRLG or node),
the entry describing the alternative next hop needs to be
found.

As discussed above, the method selects a destination to be
updated, then depending on the array type directly addresses
the backup next-hop with the SRLLG ID or the node ID. If the
compact-memory implementation was used for the SRLGAr-
ray and the NodeArray (FIGS. 15 and 16), after selecting the
correct row based on the destination, the method performs a
search operation in the list for the entry with the given SRLG/
node ID. Ifthe arrays contain entries sorted with respect to the
1D of the failed SRI.G/node, this can be realized with binary
search.

Thirdly, a “No FIB update” option will be discussed.

If alternative entries are stored in the first way, i.e. when no
lists are applied, and all the next hops are in an array with two
dimensions (FIGS. 13 and 14), it is possible to use the SRLG
and the node array for each FIB lookup that is required. In this
case the result of a FIB lookup would be an offset, which
shows the corresponding column in the SRLG and node array
(observe that there are the same columns in both arrays), and
the row is identified by the failure. In this way a single addi-
tional memory read would give the next hop.

Fourthly, a “Greedy FIB Update” option will be discussed,
with reference to FIG. 19.

The simplest way of changing the next hop when a failure
notification is received is to immediately start updating the
entries of the forwarding table one by one.

10

15

20

25

30

35

40

45

50

55

60

65

14

Ifthe number of nodes in the network is low, this technique
can update the FIB in 10 s of milliseconds.

Moreover, observe that most of the FIB entries do not need
to be updated. In an operational router, many entries are
provided by BGP (Border Gateway Protocol). BGP specifies
the inter-domain next-hop to be used. This non-connected
next-hop must be mapped to a direct intra-domain next-hop.
Several routers use recursive lookup to resolve the non-con-
nected next-hops of external prefixes. In such cases, only the
intra-domain destinations need to be updated by IPFRR, as a
result of which the same inter-domain next-hop will be
reached through an alternative intra-domain next-hop tempo-
rarily.

Fifthly, a “Lazy FIB update” option will be discussed, with
reference to FIG. 20. This option is also described further
below with reference to FIGS. 7 and 8.

The “Lazy FIB update” option is arguably a better solution
that the “Greedy FIB update” option. With the “Lazy FIB
update”, the failover can be performed in a distributed way,
and the latency stemming from the need of updating the
entries is shared between prefixes.

The main idea is that the forwarding entries are updated on
demand. That is, when a packet needs to be forwarded to a
certain destination, it queries the FIB about the next hop.
However, before using that next-hop, the forwarding proces-
sor verifies if the next-hop reflects the correct failure state.

Therefore, we suppose that the result of a FIB lookup is not
only a next hop, but it contains two extra bits too. These extra
bits describe the three possible states of the next hop stored in
the FIB (which is only a cache in this case), i.e. default next
hop, next hop for an SRLG {failure or next hop for a node
failure. Extra bits can be either encoded into the next hop
value returned from the FIB lookup (e.g., some router prod-
ucts return a 4 byte value as a result of the FIB lookup;
naturally no router has 4 billion neighbours, so some bits can
be used for other purposes), or the result of a FIB lookup can
be a memory pointer, where not only the next hop but the two
bits describing the current state of the next hop are found.

Ifthe KnownFailureTable is empty and the value of the two
bits is, e.g., 00, then the next hop contains the correct value
(cache hit): the failure free default entry.

However, if a failure occurs, the entry becomes invalid, but
the value will be updated when the first packet using the prefix
arrives (cache miss). At this time, the KnownFailureTable
will contain either SRLG failure (e.g. 01) or node failure (e.g.
10), but the forwarding entry still contains e.g. 00. From that,
the processor sees that it has to update the entry from the
respective table pinpointed by the failure type.

Moreover, each processor of the FP needs to know what the
current failure state is, in order to compare it with the value
stored for the forwarding entry. For this purpose some
memory in a common fast RAM (e.g. SRAM) can be used,
which can be checked for each packet. KnownFailureTable
can be stored in this shared fast RAM, and it stores the current
failure state (no failure, SRLG or node failure), and the data
describing the failed resource (SRLG ID or node ID) as
described above.

Observe that by using this cache, the delay stemming from
the need of updating the cache is distributed: only the first
packets heading to a given egress router gets some extra
latency.

A simple example may be in order. Consider the network
depicted in FIG. 12 and suppose that SRLG1 has failed.
Suppose that a packet heading to egress router d arrives.
When the FP starts processing the packet, it finds out that the
next hop in the FIB is not valid (FIG. 20), since it contains the
next hop for a failure free case, with code 00, which is node b,

US 9,264,322 B2

15

but the KnownFailureList contains a verdict that there is an
SRLG failure in progress, i.e. code 01. Hence, the processing
unit of the FP looks at the SRLG list to check whether there is
entry for SRLG1. It finds an entry, which says that the next
hop must be changed to node a (this is not an IP address, but
a descriptor with a local significance). Then, the FP updates
the FIB, and changes the failure code to 01 to indicate that
now the entry is valid for an SRLG failure. If the destination
of the packet had been node a or e, there would have been a
similar check, however, no entry would have been found for
the failure of SRLG1 in the SRLG list, and no update would
have taken place.

Sixthly, “Combined FIB update” will be discussed.

Greedy and lazy updates do not exclude each other. When
the type of a failure is changed, some processor(s) of the FP
can start dealing with the FIB update immediately. When it
finds a next hop, which is not valid, it can update it, while
other entries can be updated in the lazy way, since during the
update several packets can be forwarded by other cores/pro-
cessors. Moreover, since greedy update can start updating the
entries towards egress routers, packets get extremely low
extra delay in this way.

Now, inter-working with LFA will be discussed.

The LFA mechanism is the simplest IPFRR solution. It can
be used for many failures and it does not need cooperation
from neighbour router. After a local failure, an LFA-capable
node switches the route of the packets that would go through
the failed connection to loop free alternate neighbours. Loop
free alternate next-hops are those neighbours which, using
their default forwarding configuration, i.e. default routes, can
forward packets to the destination without going through the
failure. As such, the information about the failure does not
need to be communicated to loop free alternate next-hops.

A method embodying this invention needs to be used in
those cases, when it is not possible to find local loop free
alternate next-hops, i.e. when LFA does not work.

This means that nodes do not necessarily have to prepare
and store alternative route entries for remote failures which
can be handled by the node(s) adjacent to the failure using
local LFA.

In this way, this method extends the failure coverage of
LFA.

Now, Reverse Path Forwarding (RPF) check will be dis-
cussed.

Practically all vendors implement the capability to perform
Reverse Path Forwarding check before forwarding a received
packet. RPF check basically ensures that packets from fake
addresses or incorrect directions are not forwarded. RPF
check today checks on the route to the source address of the
packet. If the nexthop is the same as one from which the
packet came then RPF check succeeds. RPF can be selec-
tively enabled/disabled.

In case of plain LFA, this traditional RPF check can easily
render LFA useless, if enabled on the neighbour router used as
LFA from a first router that detects a failure. The reason is that
the neighbour router has different forwarding information,
since it does not know about the failure.

If FPN is used to advertise failure information, each node
has the same knowledge extremely quickly and so each node
has the same forwarding information. As a result RPF check,
after a failure notification, will compare the alternative
reverse path.

Now, links in multiple SRLGs will be discussed.

So far, it was assumed that each link is in at most one
SRLG. In this section, we discuss the possibilities if an opera-
tor wants to assign multiple SRLGs to certain links.

10

15

20

25

30

40

45

50

55

60

65

16

First, consider the network depicted in FIG. 21, and sup-
pose thatthere are packets to send to egress router e from both
a and b. Moreover, suppose that there exists no path from a or
b to e, which avoids all the three SRLGs, but it is possible to
avoid any two of them. E.g. [.4 can be used to avoid SRLG 1
and SRLG 2.

If we have MPLSS in this network, it is possible to pre-build
the protection paths depicted in FIG. 22; protection against
the failure of 1.2 means protection against SRLG1 and
SRLG2, i.e. the protection path between a and e goes through
x then y then 14, and the protection path between b and e
(which should protect against the failure of SRLG 2 and 3 due
to L3) goes through y then x then [.1. However, observe that
there is no way for pure IP to achieve the same behaviour: x,
y and the nodes along the path between them cannot route
packets heading to the same destination in two different ways.
Destination-based IP forwarding cannot do this.

Still, it should be considered what to do if a received
notification contains not only one, but multiple SRL.Gs. Note
that we are still targeting the handling of single failures:
single link, single node or single SRLG failures. Even ifa link
is assigned to multiple SRLGs, the IPFRR solution needs to
protect against one at a time. It should be considered how to
find out which SRLG has failed in reality.

There are two possibilities. In the first option, when a node
gets notifications with different SRLGs, it computes the inter-
section of the SRLG lists contained in the notifications. In the
sample network, let us assume that SRLLG2 has failed in
reality but the nodes receive two kinds of notifications: one
listing SRL.G1 and SRLG2, and the other containing SRL.G2
and SRLG3. After taking the intersection, each node can
deduce the same conclusion, namely that SRI.G2 has failed in
reality, so the backup next-hops should be selected as if
SRLG2 had failed. Unfortunately, since this is a real-time
task, computing the intersection can be too complex for cer-
tain hardware.

Thus, the preferred embodiment when dealing with links
assigned to multiple SRLGs is computing “extended
SRLGs”. A link is a member of an extended SRLG, if one of
its SRL.Gs contain a link in the extended SRLG (it is similar
to transitive closure). Certainly, these extended SRLGs can be
easily computed using recursion by the CP.

Back to our example, suppose that link [1 is in extended
SRLG 1. Since L2 is in an SRLG, which contains a link in
extended SRLG 1, L2 a member of extended SRLG 1 too.
Now, .3 must be added to extended SRLG 1, since a link of
SRLG 2 is already added. Finally, 1.4 becomes a member
thanks to L3 and SRLG 3.

This way, when a notification about e.g. L1 is received, due
the extended SRL(G1, the control plane must have pre-calcu-
lated a backup route avoiding all four links shown. If there
exists such a path, then the failure can be corrected, otherwise
packets are discarded since no route would be found in this
failure case. In this way the recovery falls back to traditional
restoration by OSPF or ISIS.

Observe that in this second option avoiding all the single
extended SRL.Gs is not always possible, albeit combinatorial
explosion is avoided and operators can still configure SRLGs
in the way as they get used to do.

Now, the issue of legacy routers will be discussed.

If there are legacy routers in the network, which do not
support FPN-based fast rerouting, the situation is slightly
complicated. We assume, however, as described in the FPN
invention disclosure that legacy routers can propagate the
notifications by manual configuring the forwarding rules of
the MC-FPN multicast group. Legacy routers, however, can-
not originate FPN notifications and cannot process these

US 9,264,322 B2

17

either. In this way, coverage clearly cannot be provided for all
failures, e.g., a link between two legacy routers is not pro-
tected.

If, however, an FPN-capable node is connected to a legacy
node, there is a good chance, depending on the network
topology, that failures can be corrected. When calculating
failure specific alternative routes, FBF capable nodes must
consider legacy nodes as being fixed directed links (since
legacy nodes do not change packet forwarding in the case of
failure). As suggested in PCT Patent Application No. PCT/
EP2010/059391, the FPN capability is advertised, so FPN/
FBF capable routers can learn which other nodes are non-
FPN capable.

Now, handling of multiple uncorrelated failures will be
discussed.

Even though in general IPFRR does not target the protec-
tion of multiple uncorrelated failures, the solution presented
in this invention offers this capability—at least in a limited
manner depending on the processing/memory capacity of the
hardware. While a few multiple-failure combinations care-
fully selected by the operator can be protected, in general
protecting e.g. all potential double failure cases requires a
quadratically scaling memory and processor.

However, for some special multiple failure cases the sup-
port could be the following. We only describe it for the sup-
port of a single double failure case. Let us assume we want to
provide coverage for the concurrent failure of SRLG X and
SRLG Y. All we need is to have a special new entry in the
SRLG table: {SRLGX&SRLGY—a}. Similarly for double
node failures, the node table should contain such “double”
entries.

While there are various different options for implementing
the here-presented solution according to an embodiment of
the present invention, we attempt to identify the most prom-
ising combination of options that seems to offer the best
trade-off with respect to efficiency and simplicity. This is not
to imply that there are not potentially even more promising
combinations.

Configuration of FPN that is most advantageous for fast
re-route:

Redundant-tree mode (simple bidirectional multicast trees,

can deal with simple SRLG failures, too)

Ensuring reliability with multiple sending instead of rely-
ing on acknowledgements (ease of implementation and
guaranteed timeliness)

Giving priority to FPN packets (minimise loss)

In big networks FIB switch-over seems to be most efficient
with the combined lazy and greedy updates. If the routing
area is relatively small, greedy update is enough. Finding of
the correct alternative next-hop can be based on SRLG list
and node list (requires much less memory than the array based
implementation, and despite the additional search operation,
it is fast as searching is done in a relatively small list).

Anembodiment of the present invention provides the capa-
bility of realising fast re-routing in IP. It does not suffer the
drawbacks of previous solutions while it is able to offer com-
plete single failure coverage. Hence it is practical to be imple-
mented by vendors and used by operators. Besides, it offers
some limited support even for correction against multiple
uncorrelated failures.

It can be considered that the core of an embodiment of one
aspect of the present invention is the “lazy FIB update” pro-
cedure set out above, and the preparation for failure handling
with lazy FIB update and combined FIB update.

FIB update is to be performed after a router is, in some way,
notified about a failure of the connectivity between two
nodes. The type of notification used in an embodiment of the

10

15

20

25

30

35

40

45

50

55

60

65

18

present invention is not important; FPN is one option, albeit a
very good one. Another option is that there is a separate
out-of-band control network where the notification is
received. Even further, it is not strictly required that the noti-
fication is fast. Of course, for a practical usage, the faster, the
better.

An embodiment of one aspect the present invention can be
considered to relate to a linecard preparing for single node or
single SRLG failures, the linecard receiving information
about the loss of connectivity between two routers of the
network, the linecard reacting to the failure by re-routing
traffic to an operational path if needed by updating its FIB.
The reaction can be considered to be as follows (in the alter-
native or in any combination):

1. The linecard stores “global” failure status information in a
fast access memory
a. Failure status information may include the type of the

failure (SRLG or node) and the identity of the failed
component.

2. Upon the reception of the failure information, the linecard
changes the failure status in this fast memory as needed
a. May decide that instead of an SRLG failure, a node

failure happened and update the failure identity.

b. If the failure state changes, the linecard may start (in the

background) the greedy FIB update as described above.

3. The linecard storing a table of alternate routes that stores
failure specific alternative routes for different destinations.
a. The alternate routes table being organised as described in

FIGS. 13 14.
b. The alternate routes table being organised as described in
FIGS. 15 and 16.

4. The linecard storing in the FIB, at each entry the type of the
failure status at which that entry is valid.

5. The linecard, before forwarding a packet, doing a route
lookup to fetch routing information from the slow memory
to the fast memory, in the same step the linecard also
fetching the failure status of the route without memory
access overhead.

6. Comparing the global failure status information with
obtained in the previous step.

7. If matching, forwarding the packet.

8. If not matching, the linecard performing an update of the
entry based on the global failure status and the alternate
routes table before forwarding the packet.

9. The reception of the information about the loss of connec-
tivity between two routers of the network being performed
using
a. BFD
b. L2 upcall
c. FPN
d. Out-of-band signalling network
Another aspect of the present invention can be considered

to relate to a control processor preparing for single node or

single SRLG failures, the CP calculating failure specific alter-
nate routes to different destinations and downloading these
alternate routes to at least one linecard, characterised in that:

1. Extended SRLGs are calculated as described above; and/or

2. Sending its capability of performing the enhanced fast
re-routing of this invention, and receiving similar informa-
tion from other routers (the capability may be advertised in
Opaque LSAs of OSPF); and/or

3. After learning the capabilities of other routers in the area,
calculating the alternative routes anticipating that some
routers not advertising their capability will not perform
route changes as described above.

FIG. 7 is a schematic flow chart illustrating steps per-
formed by an apparatus embodying the present invention, and

US 9,264,322 B2

19

FIG. 8 is a schematic block diagram illustrating parts of an
apparatus for carrying out the method of FIG. 7.

A router 1 comprises a first processing unit (FPU) 10 and a
second processing unit (CPU) 30. Three such first processing
units are illustrated within the router 1, though the detail of
only one of the first processing units is shown. Two other
routers are also illustrated in FIG. 4, without any internal
detail. The first processing unit 10 can be considered as being
equivalent to a linecard or forwarding processor described
elsewhere herein. The second processing unit 30 can be con-
sidered as being equivalent to a control card or control pro-
cessor described elsewhere herein.

The first processing unit 10 comprises a forwarding infor-
mation (FI) memory 12 which is used for maintaining for-
warding information specifying the next hop node for each of
a plurality of possible destination nodes. The first processing
unit 10 also comprises an update information (UI) memory 14
which is used for maintaining update information specitying
how, if at all, the next hop nodes specified in the forwarding
information are to be updated for a plurality of possible net-
work resource failures. The first processing unit 10 also com-
prises aknown failure information (KFI) memory 16 which is
used for maintaining known failure information relating to a
known network resource failure (or specifying that there is no
known network resource failure). The maintaining of these
three memories (which is practice may be part of a single
memory) is represented as step S1 in the flowchart of FIG. 7.

The first processing unit 10 comprises a receiver 18. In step
S2, a failure notification relating to a network resource failure
is received by the receiver 18, and is passed to a processor 20.
The failure notification (e.g. concerning a loss of connectivity
between two routers of the network) may be received via any
one or more of the following mechanisms: Bidirectional For-
warding Detection (BFD); L2 upcall; FPN (see PCT Patent
Application No. PCT/EP2010/059391); and an out-of-band
signalling network. In response to receipt of the failure noti-
fication, in step S3 it is determined by the processor 20 from
the failure notification how, if at all, the known failure infor-
mation stored in the KFI memory 16 is to be updated. If
required, the processor 20 causes the known failure informa-
tionto be updated in step S4. In either case, processing returns
to step S1.

In step S5, a communications packet is received by the
receiver 18 and is passed to the processor 20. The following
steps S6 to S10 are taken in response to receipt of the com-
munications packet. In step S6 the destination node for the
received packet is determined by the processor 20 from the
received packet. In step S7 it is determined by the processor
20 whether the next hop node specified by the forwarding
information for the determined destination node is potentially
invalid in view of the known failure information. If so, then in
step S8 the processor 20 causes, if necessary, the next hop
node for the determined destination node to be updated in the
forwarding information stored in the FI memory 12, using the
update information stored in the Ul memory 14 and the
known failure information stored in the KFI memory 16. In
either case, in step S9 the processor 20 determines the next
hop node for the received packet using the forwarding infor-
mation from the FI memory 12 and the destination node
determined from the received communications packet. (In the
flowchart of FIG. 7 the updated forwarding information is
used in step S9. In other words, if an update to the next hop
node for the determined destination node is made in step S8,
then the next hop node determined for the received packet in
step S9 is the updated next hop. However, it could also be the
case that, to save time, step S9 occurs before step S8 has had
a chance to complete, so that the updated forwarding infor-

30

40

45

50

20

mation is only used in a subsequent run through steps S5 to
S10.) In step S10 the processor 20 causes a transmitter 22 of
the first processing unit 10 to forward the received packet
towards the determined next hop node.

The forwarding information may comprise a status flag
corresponding respectively to each of the plurality of possible
destination nodes. The status flag is for use in determining in
step S7 whether the next hop node for the destination node
concerned is potentially invalid in view of the known failure
information.

Step S7 may comprise comparing the status flag corre-
sponding to the determined destination node in the forward-
ing information to a corresponding status flag being main-
tained in the known failure information, and determining that
the determined destination node is potentially invalid in view
of the known failure information if there is a mismatch.

The method may comprise, if the next hop node for the
determined destination node in the forwarding information is
updated in step S8, also updating the status flag for the deter-
mined destination node in the forwarding information to indi-
cate that the updated next hop node for the determined desti-
nation node in the forwarding information is valid in view of
the known failure information.

The status flag for the determined destination node in the
forwarding information may be updated so as to correspond
to the status flag in the known failure information.

The status flag may specify a failure type. The failure type
may be selected from a group of failure types comprising: (a)
no failure; (b) link or link group failure; and (c¢) node failure.

The status flag may be implemented using a two-digit
binary code.

The known failure information may specify the identity of
the network resource failure.

The failure notification may specify a node and a link or
link group, indicating that the network resource failure relates
either to the specified node or to the specified link or link
group.

Step S3 may comprise a comparison between the node and
link or link group specified in the failure notification and
previously-stored such node and link or link group informa-
tion received in previous failure notifications. Step S4 may
comprise setting or maintaining the status flag and the iden-
tity of the network resource in the known failure information
based on the comparison.

The method may comprise, in response to receipt of the
failure notification or a further such failure notification:
reviewing and if necessary starting to update the next hop
node for each of'the possible destination nodes in the forward-
ing information using the update information and the infor-
mation in the further failure notification. For example, a lazy
update procedure could be performed initially, and at the
same time a greedy update procedure could be set in motion
(e.g. in the background).

The steps may be performed in a forwarding processor
(FPU 10) of the router. The update information may be pre-
configured in the forwarding processor by a control processor
of the router (CPU 30).

The known failure information may be stored in a fast
memory of the router, such as SRAM. Thus, the KFI memory
may be or be part of an SRAM.

The network resource failure to which the known failure
information relates may relate to the failure of a plurality of
network resources.

Steps S2 to S4 can be considered to correspond generally to
part 1 of section 4 described above (collecting of known
failures). Steps S5 to S10 can be considered to correspond
generally to parts 5 and 6 of section 4 described above (Lazy

US 9,264,322 B2

21

FIB update and Combined FIB update). Parts of step S1 can
be considered to correspond generally to section 3 described
above (preparation for failures). However, the correspon-
dence between the steps of FIG. 7 and the above-described
sections is not exact, but the skilled reader will ready under-
stand how the more detailed description described previously
relates to the more general description described with refer-
ence to FIGS. 7 and 8.

It will be appreciated that operation of one or more of the
above-described components can be provided in the form of
one or more processors or processing units, which processing
unit or units could be controlled or provided at least in part by
aprogram operating on the device or apparatus. The function
of several depicted components may in fact be performed by
a single component. A single processor or processing unit
may be arranged to perform the function of multiple compo-
nents. Such an operating program can be stored on a com-
puter-readable medium, or could, for example, be embodied
in a signal such as a downloadable data signal provided from
an Internet website. The appended claims are to be interpreted
as covering an operating program by itself, or as a record on
a carrier, or as a signal, or in any other form.

It will also be appreciated by the person of skill in the art
that various modifications may be made to the above-de-
scribed embodiments without departing from the scope of the
present invention as defined by the appended claims.

The invention claimed is:

1. A method for use by a router in a communications
network, comprising:

maintaining forwarding information specifying a next hop

node for each of a plurality of possible destination
nodes;

maintaining update information specifying how, if at all,

the next hop nodes specified in the forwarding informa-
tion are to be updated for a plurality of possible network
resource failures;

maintaining known failure information relating to a known

network resource failure or specifying that there is no
known network resource failure;

receiving a failure notification relating to a network

resource failure, and in response to receipt of the failure

notification:

determining from the failure notification how, if at all,
the known failure information is to be updated;

updating the known failure information, if required,
based on the determination;

receiving a communications packet, and in response to

receipt of the communications packet:

determining a destination node for the received packet;

determining whether the next hop node specified by the
forwarding information for the determined destina-
tion node is potentially invalid in view of the known
failure information;

if so, then updating if necessary the next hop node for the
determined destination node in the forwarding infor-
mation based on the update information and the
known failure information;

determining the next hop node for the received packet
based on the forwarding information and the deter-
mined destination node; and

forwarding the received packet towards the determined
next hop node.

2. The method of claim 1 wherein the forwarding informa-
tion comprises a status flag corresponding respectively to
each of the plurality of possible destination nodes, and
wherein determining whether the next hop node for the deter-

10

20

25

35

40

45

50

55

60

22

mined destination node is potentially invalid in view of the
known failure information is based on the status flag.

3. The method of claim 2 wherein the status flag is imple-
mented using a two-digit binary code.

4. The method of claim 3 wherein the known failure infor-
mation specifies the identity of the network resource failure.

5. The method of claim 4 wherein the failure notification
specifies a node and a link or link group, indicating that the
network resource failure relates either to the specified node or
to the specified link or link group.

6. The method of claim 5 wherein determining from the
failure notification how, if at all, the known failure informa-
tion is to be updated comprises comparing between the node
and link or link group specified in the failure notification, and
a previously-stored node and link or link group information
received in a previous failure notification, and wherein updat-
ing the known failure information, if required, based on the
determination comprises setting or maintaining the status flag
and the identity of the network resource in the known failure
information based on the comparison.

7. The method of claim 2 wherein determining whether the
next hop node for the determined destination node is poten-
tially invalid in view of the known failure information based
on the status flag comprises:

comparing the status flag corresponding to the determined

destination node in the forwarding information to a cor-
responding status flag being maintained in the known
failure information; and

determining that the determined destination node is poten-

tially invalid in view of the known failure information if
there is a mismatch.

8. The method of claim 7 wherein if the next hop node for
the determined destination node in the forwarding informa-
tion is updated, the method further comprises updating the
status flag for the determined destination node in the forward-
ing information to indicate that the updated next hop node for
the determined destination node in the forwarding informa-
tion is valid in view of the known failure information.

9. The method of claim 8 wherein the status flag for the
determined destination node in the forwarding information is
updated to correspond to the status flag in the known failure
information.

10. The method of claim 7 wherein the status flag specifies
a failure type.

11. The method of claim 10 wherein the failure type is
selected from a group of failure types comprising no failure,
link or link group failure, and node failure.

12. The method of claim 1 wherein, if an update to the next
hop node for the determined destination node is made, then
determining the next hop node for the received packet based
onthe forwarding information and the determined destination
node comprises determining the next hop node to be the
updated next hop.

13. The method of claim 1 wherein responsive to receiving
the failure notification or a subsequent failure notification,
further comprising:

determining whether to update the next hop node for each

ofthe possible destination nodes in the forwarding infor-
mation; and

updating the next hop node for each of the possible desti-

nation nodes in the forwarding information based on the
update information, and on the information in the failure
notification or the subsequent failure notification.

14. The method of claim 1 wherein the method is per-
formed in a forwarding processor of the router, and wherein
the update information is pre-configured in the forwarding
processor by a control processor of the router.

US 9,264,322 B2

23

15. The method of claim 1 further comprising storing the

known failure information in a fast memory of the router.

16. The method of claim 1 wherein the network resource

failure indicated by the known failure information is associ-
ated with a failure of a plurality of network resources.

17. An apparatus for use as a router, or in a router, of a

communications network, the apparatus comprising:

a forwarding information(FI) memory configured to store
forwarding information specifying a next hop node for
each of a plurality of possible destination nodes;

an update information (UI) memory configured to store
update information specifying how, if at all, the next hop
nodes specified in the forwarding information are to be
updated for a plurality of possible network resource
failures;

a known failure information (KFI) memory configured to
store known failure information specifying a known net-
work resource failure, or specifying that there is no
known network resource failure;

a receiver configured to receive a failure notification relat-
ing to a network resource failure;

a processor configured to receive the failure notification
and to:
determine from the failure notification how, if at all, the

known failure information is to be updated;
update the known failure information, if required, based
on the determination;
the receiver further configured to receive a communica-
tions packet; and
in response to receipt of the communications packet, the
processor further configured to:
determine a destination node for the received packet;
determine whether the next hop node specified by the
forwarding information for the determined destina-
tion node is potentially invalid in view of the known
failure information;

if so, updating if necessary the next hop node for the
determined destination node in the forwarding infor-

10

15

20

25

30

35

24

mation based on the update information and the
known failure information;

determine the next hop node for the received packet
based on the forwarding information and the deter-
mined destination node; and

forward the received packet towards the determined next

hop node.

18. A computer program product comprising a non-transi-
tory computer readable storage medium having computer
readable code stored thereon, which when executed by an
apparatus in a communications network, controls the appara-
tus to: maintain forwarding information specifying a next hop
node for each of a plurality of possible destination nodes;
maintain update information specifying how, if at all, the next
hop nodes specified in the forwarding information are to be
updated for a plurality of possible network resource failures;
maintain known failure information relating to a known net-
work resource failure or specifying that there is no known
network resource failure; receive a failure notification relat-
ing to a network resource failure, and in response to receipt of
the failure notification: determine from the failure notifica-
tion how, if at all, the known failure information is to be
updated; update the known failure information, if required,
based on the determination; receive a communications
packet, and in response to receipt of the communications
packet: determine a destination node for the received packet;
determine whether the next hop node specified by the for-
warding information for the determined destination node is
potentially invalid in view of the known failure information;
if so, update the next hop node for the determined destination
node in the forwarding information based on the update infor-
mation and the known failure information; determine the next
hop node for the received packet based on the forwarding
information and the determined destination node; and for-
ward the received packet towards the determined next hop
node.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,264,322 B2 Page 1 of 1
APPLICATION NO. - 13/811716

DATED : February 16, 2016

INVENTOR(S) : Csdszér et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Drawings

In Fig. 2, Sheet 1 of 13, below Figure, insert -- PRIOR ART --.

Signed and Sealed this
Fourteenth Day of June, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

